Luran S molding compounds can be processed on any commercially available injection molding machine. Single-screw injection molding machines are usually used.
Screw configuration
A conventional 3-zone general purpose screw fitted with a non-return valve can be used. The screw length should be from 16 to 20 D. The data given in the following Tables are typical values for screw designs which have proven successful. The pitch is constant over the entire length and should be from 0.8 to 1 D.
Typical values for screw configuration:
Length of section
|
|
Overall length
|
16 -20 D
|
Feed zone
|
8 - 10 D
|
Compression zone
|
4.8 - 6 D
|
Metering zone
|
3.2 - 4 D
|
Screw diameter (mm)
|
Flight depth in the feed zone (mm)
|
Flight depths in the metering zone (mm)
|
30
|
5
|
2.5
|
50
|
6
|
3
|
70
|
8
|
4
|
Nozzles
Open nozzles can be used for processing Luran S molding compounds because Luran S melts are relatively viscous. Open nozzles have a very simple design and therefore give particularly good flow.
Shut-off nozzles have advantages when high back pressure is being used or undesirable stringing has to be avoided and thick-walled parts are to be manufactured. Mechanically or hydraulically operated needle valve nozzles have proven the most successful.
Gate and mold design
Any known type of gate may be used, including hot runner systems. The guidelines for the design of gates and molds for the manufacture of injection-molded parts from thermoplastics (VDI 2006) are also applicable to Luran S. Gates and feed channels should not be too small, otherwise excessively high melt temperature and injection pressure are required. This can result in streaks, charring caused by shear, voids or sink marks.
Use of inserts
Metal parts can be molded in without difficulty, but they should be preheated to 80-120°C before being placed in the mold so that no internal stresses are created. The metal parts must be free of grease, and to improve anchoring should have milled, grooved or similar surfaces. Metal edges should be well rounded.
Mold temperature control
A carefully designed temperature control system for the mold is particularly important, since the effective mold surface temperature has a decisive effect on surface quality (gloss, flow lines) and on the weld line strength, distortion, shrinkage and tolerances of moldings. The recommended mold surface temperatures for Luran S grades are given in the following Table. An eventual warpage of the moldings can be counteracted by separate and differentiated temperature control of the two halves of the mold.
Recommended mold surface temperatures for Luran® S:
|
Processing temperature (°C)
|
Mold temperature (°C)
|
Typical shrinkage (%)
|
Luran S - ASA grades
|
240-280 °C
|
40-80 °C
|
0.4-0.7
|
Luran S - ASA/PC grades
|
260-300 °C
|
60-90 °C
|
0.3-0.7
|
Luran S KR 2867 C WU
|
260-280 °C
|
40-60 °C
|
0.3-0.7
|
Processing temperature
Luran S molding compounds are generally processed at melt temperatures of from 240 to 280°C, but the polycarbonate-containing Luran® S grades (eg. Luran® S KR 2861/1 C) should be processed at 260 to 300°C except the flame-retardant grade Luran® S KR 2867 CWU, for which a temperature range of 260 to 280°C is recommended (see Table 4 above). For processing at the upper end of the temperature range short residence times should be used, since otherwise the material can undergo thermal degradation. This can be recognized in colored compounds by the change in color; it normally becomes somewhat paler.
Feed characteristics
Even at high screw rotation rates plastification of Luran S molding compounds proceeds smoothly and without thermal degradation. Plastification performance rises with increasing processing temperature.
For high processing temperatures and/or for long cycle times the temperature of the first heater band (close to the feed hopper) should be set somewhat lower in order to prevent premature melting of the granules in the feed zone (bridging).
Mold filling
A relatively high injection speed is useful since little cooling occurs during mold filling; this gives a glossy surface, a low visibility of the weld lines and a high weld line strength. Too low a rate of mold filling gives parts with unsatisfactory surfaces. When the melt is injected, care should be taken that the air in the mold cavity can escape at a suitable point, to avoid charring by compressed air (diesel effect). To obtain perfect injection-molded parts and to prevent the formation of voids, the hold pressure and the hold pressure time must be sufficient to compensate the volume reduction which occurs when the melt is cooled. On the other hand overfeeding of the mold cavity must also be avoided, since this causes stresses in the molding. The risk of overfeeding exists mainly in the vicinity of the gate, at high injection rates and high hold pressure.
Flow characteristics
The spiral flow test in Fig. 14 and Fig. 15 shows the flow characteristics of Luran S.
Fig. 14 : Flowability of Luran S (ASA) as a function of melt temperature (spiral flow test). Mold: Test spiral 2 mm x 10 mm; Injection pressure 1100 bar; mold surface temperature 60 °C
Fig. 15 : Flowability of Luran S (ASA+PC) as a function of melt temperature (spiral flow test). Mold: Test spiral 2 mm x 10 mm; Injection pressure 1100 bar; mold surface temperature 80 °C
Mold release
Luran S can be readily demolded, so that even moldings of complicated design are possible. Drafts of from 0.5 to 0.9° are generally sufficient. Textured surfaces require larger drafts: 1° makes it possible to demold a part with 0.02 mm depth of texture from the mold cavity and a part with 0.01 mm from the mold core.
Shrinkage and post-shrinkage
Shrinkage is significantly lower with Luran S molding compounds than with semi crystalline plastics.
The processing shrinkage is usually from 0.4 to 0.7%, and in exceptional cases well below 0.4%. In regions of a molding which experience high hold pressure (near to the gate) it may even be close to 0%.
Post-shrinkage is negligible in most applications, making up about 1/10 of the overall shrinkage.